40=12+64t-16t^2

Simple and best practice solution for 40=12+64t-16t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 40=12+64t-16t^2 equation:



40=12+64t-16t^2
We move all terms to the left:
40-(12+64t-16t^2)=0
We get rid of parentheses
16t^2-64t-12+40=0
We add all the numbers together, and all the variables
16t^2-64t+28=0
a = 16; b = -64; c = +28;
Δ = b2-4ac
Δ = -642-4·16·28
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2304}=48$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-48}{2*16}=\frac{16}{32} =1/2 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+48}{2*16}=\frac{112}{32} =3+1/2 $

See similar equations:

| -6(8+6k)-8=24+7k | | 5/p=4/11 | | 117=3(4a+7) | | B=-2a× | | x+9-12=1 | | 6.8m-6.3=-2.322-m | | x+11-12=1 | | 7/p=5/9 | | -3=12y-5(4y-7) | | 2x^2+5x^2=3364 | | x+10-12=1 | | 30=7r+5 | | 2.x=3√8 | | 4+3(y+6)=0 | | 4/p=7/15 | | 30=7r=5 | | x-5/x-4=9/6 | | 3(2x-1)+5=2(x+1) | | 3x^2-33-180=0 | | 2x+7/3-3x-5/7+20=30-3x/5 | | 1-6.08n+7.9n=-10.176-5.165n | | x/(-5)+4=3 | | x+2÷7=14 | | 10-3x=7×-10 | | x/10=21/42 | | 19/4-3.5a=-1/4a+3/2 | | 7-(z-6)=-70 | | -12=n-8-2 | | 7/x=21/3 | | 7a=5(a-2)=16 | | 3m;m=6 | | 3x^2+-33-180=0 |

Equations solver categories